The Posterior Segment in Diabetes

Carlo J. Pelino, OD, FAAO
Joseph J. Pizzimenti, OD, FAAO
pizzimen@nova.edu

Course Goal
- To provide useful clinical information about current standards in the treatment and management of diabetes and diabetic retinopathy.

The eye does not exist in isolation. It is an extension of the brain/CNS. The anatomy of the eye is structured to serve the retina. Primary reason for dilation is to detect systemic disease.

The eye is the only part of the body where neurological and vascular tissues can be viewed directly.

The Posterior Segment in Diabetes Mellitus

Statement of the Problem
- Diabetes and diabetic retinopathy (DR) is the leading cause of blindness in the working population in the western world.
- As the number of people living with type 2 DM is on the rise, eye care providers are seeing more and more DR.
- The obesity epidemic is driving these alarming increases.
Diabetes Mellitus

- The inability of the body to use and store sugar properly, resulting in high blood sugar levels.
- Type 1 (5-10%): previously called juvenile-onset or insulin-dependent.
 - Beta cell destruction and absolute insulin deficiency
- Type 2 (90-95%): previously termed adult-onset or non-insulin-dependent.
 - Insulin resistance with relative insulin deficiency.

Diabetes is a disease of impaired insulin action

- Decreased insulin production
- Resistance to insulin action

DM/DR is Inflammation

- Leukocytes, once inside retinal tissue, secrete a variety of inflammatory substances such as TNF and VEGF.
- These released mediators increase vascular permeability and stimulate more mediators to enhance the inflammatory reaction.

Diabesity

- M________ S________ is characterized by central (abdominal) obesity, dyslipidemia, raised blood pressure, and insulin resistance.
- "Diabesity"
 - Up to 97% of type 2 caused by excessive weight
 - Obesity = Increased weight caused by excess accumulation of fat.
Metabolic Syndrome

- Obesity
- ↑ Blood Pressure
- Diabetes
- Dyslipidemia

*3 or more are diagnostic of Metabolic Syndrome:
- Waist circumference:
 - Men — > 40 inches
 - Women — > 35 inches
- Triglycerides ≥ 150 mg/dL
- HDL cholesterol:
 - Men — < 40 mg/dL
 - Women — < 50 mg/dL
- BP ≥ 130/85 mmHg
- FPG ≥ 100 mg/dL

45 y/o BM

- Hb A1C = 9.8%
- Sleep Apnea w/ No CPAP use
- Anemia = 8 Hb
- Albuminuria>300
- BP = 150/90
- Smoker
- Gum Disease
- Vitamin D deficiency

Diabetes Mellitus

- Increasing Prevalence in the United States (CDC Data)

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2006</th>
<th>2007</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 20 yrs or older</td>
<td>8.7%</td>
<td>9.6%</td>
<td>10.7%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Age 80 yrs or older</td>
<td>18.3%</td>
<td>20.9%</td>
<td>23.1%</td>
<td>26.9%</td>
</tr>
</tbody>
</table>

Epidemiology

- DM is 7th leading cause of death in the US
- > 25 million people with DM, costing $132 billion
- 75 million have pre-diabetes
- DM is leading cause of new blindness, lower limb amputation and renal failure
- DM => a 2-4 fold increased risk of CV disease

The Future

- 2014 = 346 M
- 2030 = 552 M

Diabetic Retinopathy: Epidemiology

- 28.5% of Americans with DM over 40 yrs of age have DR
- 4.1 million
- 6 million by the year 2020
- DR Prevalence increases with:
 - Duration of diabetes
 - Patient age
- Most common cause of blindness in young Americans (20-64 yrs).

What We Already Know

- DR is a microvascular disease.
- Proliferative DR (PDR) characterized by new vessel formation in the retina and optic disc as a result of hypoxia, microangiopathy, and capillary occlusion.
- Tractional RD, CSME, and NVG may result in severe vision loss.

Diabetic Retinopathy: Epidemiology

- WESDR
 - Wisconsin Epidemiologic Study of Diabetic Retinopathy
- After 20 yrs of Diabetes
 - 99% type 1 DM will have retinopathy
 - 60% type 2 DM will have retinopathy
- Limitation: primarily white patients of northern European descent

Questions and Comments?

Systemic Conditions that May Exacerbate DR

- Elevated serum lipids (dyslipidemia)
- Hypertension
- Carotid artery occlusive disease
- Advanced diabetic renal disease
- Sleep Apnea
- Anemia
- Pregnancy
- Obesity

Hypertension
Diabetic Nephropathy

- Hydrostatic Pressure = moves fluid out
- Osmotic Pressure = keeps fluid in

Body Mass Index

- World Health Organization (WHO) Classification
 - For adults, Grade 1 (simply called overweight) is a BMI of 25-29.9 kg/m².
 - Grade 2 (commonly called obesity) is a BMI of 30-39.9 kg/m².
 - Grade 3 (commonly called severe obesity) is a BMI greater than or equal to 40 kg/m².

Obesity Trends* Among U.S. Adults
BRFSS, 1994

- (*BMI ≥ 30, or ~ 30 lbs overweight for 5'4" person)
The Pathology of Obesity

Skin
Endocrine
Heart
Pulmonary
GI
Urine
Gyno
Neuro
Cancer
Post-Op

Yeast Infections, Gout, BJD
Polycystic Ovarian Syndrome, low testosterone, high estrogen
Heart Attack, Stroke, CHF
Sleep Apnea
Gallstones, GERD
Incontinence
Abnormal menses, infertility
Depression, memory problems
Breast cancer, colon, prostate, bladder and esophagus
Pulmonary embolism

Complications of Excess Weight
Obstructive Sleep Apnea Syndrome (OSA)

What We Already Know

• Type 2 DM is the most highly associated systemic complication of obesity. *

• Sleep Apnea Syndrome and DR
 – 12 million American adults have OSA.
 – It is often found in patients with obesity, diabetes and/or cardiovascular disease.
 – OSA may aggravate DR, secondary to nocturnal hypertension and hypoxemia.

Systemic Complications of OSA

• HTN
• Type 2 DM
• Congestive Heart Failure
• Coronary Artery Disease
• Atrial Fibrillation
• OSA is an independent RF for stroke.*
Impaired blood flow in OSA

Ocular Complications of OSA
- Changes in eyelid tissue
 - Floppy eyelid syndrome (FES)
- Changes in cornea
 - K-conus
- Changes in the optic nerve
 - The glaucomas
 - open angle (OAG)
 - normal tension (NTG)
 - Non-arteritic anterior ischemic optic neuropathy (NAION)
- Changes in retina: DR, HR, RVO

CPAP: “Up your nose with a rubber hose!”

Sleep Apnea and DR
- DME
 - Higher prevalence of DME
 - Recurrence rate higher
 - Unresponsive to Anti-VEGF
- PDR
 - Higher prevalence of PDR
 - Worsening of PDR
- Improvement of DME, PDR w/CPAP

Cigarette Smoking, Ocular & Vascular Disease
- Increased arteriolar stiffness (sclerosis)
- Increased Vascular Endothelial Growth Factor (VEGF) production
- Development/worsening of DR
- Development/worsening of AMD
DM + Smoking = Blindness

• For people aged one to 70 years, the RDA is at least 600 IU.
• For people over 70, RDA is at least 800 IU

Serum 25-Hydroxyvitamin D [25(OH)D] Concentrations and Health

<table>
<thead>
<tr>
<th>Levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><12ng/mL</td>
<td>Deficiency, leading to rickets in infants and children and osteomalacia in adults</td>
</tr>
<tr>
<td>12-20ng/mL</td>
<td>Insufficient for bone and overall health in healthy individuals</td>
</tr>
<tr>
<td>>20ng/mL</td>
<td>Adequate for bone and overall health</td>
</tr>
<tr>
<td>>50ng/mL</td>
<td>Potential adverse effects</td>
</tr>
</tbody>
</table>

Sources of Vitamin D

- 1 cup per day
 - Non-fat fortified milk
- at least three servings per week
 - Fish: salmon, tuna, sardines, mackerel, herring
- Five to 15 minutes, two to five times per week
 - “Sensible sunlight”
- 1,000 IU per day
 - Vitamin D3 supplements

Omega-3s (EPA and DHA)

- Decreases insulin resistance
- Decrease depression
- Prevents cardiac arrhythmias
- Increases telomere length
- 1000 mg to 4000 mg / daily

Questions and Comments

Vitamin D Deficiency

- Diet provides only 10% of RDA of Vitamin D

Dietary Vitamin D:

- Cod Liver Oil, Sockeye Salmon
 - Modulation of cell growth
 - Neuromuscular and immune functions
 - Reduction of inflammation
 - Vitamin D may moderate cardiac and vascular disease, and reduce proteinuria.

Omega-3s

- Omega-3 fatty acids are found in oily fish like salmon and flaxseed and canola oils

- Decreases insulin resistance
- Decrease depression
- Prevents cardiac arrhythmias
- Increases telomere length
- 1000 mg to 4000 mg / daily
Screening for Diabetes & Pre-Diabetes

- Consider testing if person is:
 - Overweight or obese with additional risk factor for diabetes (e.g. smoking, HTN)
 - Age 45 or older

- Obtain: A1C or FPG or 2-hour plasma glucose post 75g OGTT

- Repeat testing every 3 years if results are normal

- In patients with increased risk, identify and treat other CVD risk factors

Diagnostic Criteria for Pre-Diabetes & Diabetes

<table>
<thead>
<tr>
<th></th>
<th>A1C</th>
<th>Fasting Plasma Glucose Test (FPG)</th>
<th>2-Hour Oral Glucose Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable</td>
<td>≤5.6%</td>
<td>Below 100 mg/dl</td>
<td>Below 140 mg/dl</td>
</tr>
<tr>
<td>Pre-Diabetes</td>
<td>5.7% - 6.4%</td>
<td>100-125 mg/dl (IFG)</td>
<td>140-199 mg/dl (IGT)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>≥6.5%</td>
<td>≥126 mg/dl or above</td>
<td>≥200 mg/dl or above</td>
</tr>
</tbody>
</table>

Even small reductions in A1C levels significantly reduce the risk for long-term complications.

- Coronary artery disease
 - Heart attacks

- Peripheral vascular disease
 - Limb Amputations

- Cerebral vascular disease
 - Strokes

- Renal vascular disease
 - Renal failure and dialysis

MACROVASCULAR COMPLICATIONS

Diabetic Retinopathy: Pathogenesis

- Extended exposure to hyperglycemia leads to biochemical and physiologic changes that ultimately cause vascular endothelial damage

 - Loss of pericytes

 - Basement membrane thickening
 - Compromises lumen (leading to non-perfusion)
 - Decompensation of endothelial barrier function

UKPDS: 1% A1C Decrease & Reduced Risk of Complications

- 43% Lower-extremity amputation or fatal peripheral vascular disease
- 37% Cataract extraction
- 19% Microvascular disease
- 15% Heart failure
- 14% Myocardial infarction
- 13% Stroke

*P<0.05; †P<0.0001.

Diabetic Retinopathy: Pathogenesis

- Extended exposure to hyperglycemia leads to biochemical and physiologic changes that ultimately cause vascular endothelial damage

 - Loss of pericytes

 - Basement membrane thickening
 - Compromises lumen (leading to non-perfusion)
 - Decompensation of endothelial barrier function
Diabetic Retinopathy: Pathogenesis

- Several hematologic and biochemical abnormalities correlate with prevalence and severity of DR.
 - Increased platelet adhesiveness
 - Increased erythrocyte aggregation
 - Abnormal serum lipids
 - Defective fibrinolysis
 - Upregulation of VEGF
 - Abnormalities in whole blood viscosity

Diabetic Retinopathy: Pathogenesis

- Vision Loss
 - Capillary Leakage
 - Macular edema
 - Capillary Occlusion
 - Macular ischemia
 - Diabetic papillopathy
 - Sequelae from ischemia-induced neovascularization
 - Vitreous hemorrhage
 - Traction retinal detachment
 - Neovascular glaucoma
Non Proliferative Diabetic Retinopathy (NPDR)

- Microaneurysms
- Dot-and-blot intraretinal hemorrhages
- Cotton wool spots
- Hard exudates
- Venous beading
- Intraretinal microvascular abnormalities (IRMA)

Severe NPDR

- 4-2-1 rule (any one)
 - 4 quadrants of intraretinal hemorrhages and microaneurysms
 - 2 quadrants of venous beading
 - 1 quadrant of IRMA
 - 15% chance of progression to High Risk PDR in 1yr
- Very severe NPDR
 - Any two of the above
 - 45% chance of progression to High Risk PDR in 1yr

Vascular Changes in DR

Enlargement of FAZ to more than 1000 microns correlates with decreased vision/foveal ischemia

Proliferative Diabetic Retinopathy (PDR)

- Extraretinal fibrovascular proliferation that extends beyond the ILM
- New vessels evolve in three stages
 - Fine new vessels with minimal fibrous tissue
 - Increase in size and fibrous component
 - Regression of vessels with residual fibrovascular proliferation along the posterior hyaloid scaffold
- Neovascularization can occur in the retina, on the optic nerve head, or in anterior segment (iris, angle)
Proliferative Diabetic Retinopathy

- NVI: Neovascularization of the iris
- NVA: Neovascularization of the angle
- NVD: Neovascularization of the disc
- NVE: Neovascularization elsewhere

Diabetic Retinopathy: Classification of PDR

- DRS Classification of High Risk Characteristics
 - Any NVD with vitreous hemorrhage
 - NVD ≥ 1/4 to 1/3 DA (with or without vitreous hemorrhage)
 - NVE ≥ 1/2 DA with vitreous hemorrhage
 - Or, any 3 of the following 4 findings:
 - Presence of vitreous heme or preretinal heme
 - Presence of new vessels
 - Location of new vessels on or near the optic disc
 - Moderate to severe extent of new vessels

PDR

- Associated with increased risk of:
 - Heart Attack
 - Stroke
 - Kidney Failure
 - Amputation
 - Death

Microaneurysms and IRMA

Capillary Non-perfusion
Questions and Comments?

Novel Ocular Biomarkers for Diabetes

Macular Pigment Optical Density (MPOD)

Crystalline Lens Autofluorescence (CLA)

The Importance of Macular Pigments

- Serum levels of lutein and zeaxanthin are inversely associated with type 2 DM and impaired glucose metabolism.¹
- A recent study showed that type 2 patients—with or without retinopathy—had reduced MPOD compared to non-diabetic patients. In addition, researchers observed an inverse correlation between MPOD and HbA1c levels. ²

MPOD--HFP with QuantifEye

Crystalline Lens Autofluorescence (CLA)
- CLA identifies elevated advanced glycosolated end-products (AGEs)—a biomarker highly correlated to glycemic status—prior to early DM complications.
- Subjects with poor long-term glycemic control had significantly higher levels of lens AGEs compared to age-matched healthy controls.

CLA with ClearPath DS-120

Google Glucose Smart CL.

Diabetic Retinopathy-Multi-Spectral Image

- **Oxy/Deoxy Hemoglobin**
 - Macular edema centrally is evidenced by the elevated blurry area (red circle)
 - CME is confirmed with OCT

Diabetic Retinopathy

- **MSI Yellow**
 - Intraretinal blot hemorrhages are hyporeflective and seen throughout the posterior pole (circles)
 - A broad area of epiretinal membrane is also seen (arrows)
Diabetic Retinopathy

MSI Oxy/Deoxy Hemoglobin
- Reveals a hyporeflective (dark) optic nerve consistent with ischemia (arrow)
- Atrophic scars from focal laser treatment are evident (circles)

Diabetic Retinopathy: Optometry’s Role

- Prevention
- Comprehensive workup and annual DFE
- Early detection
- Proper consultation and referral
- Vision Rehabilitation

Indications for Visual Field Testing

- Glaucoma
- Neural Loss/Neuro Eye Disease
- Retinal Disease
- Functional Testing

Structure and Function in DR

48 y/o WM with Diabetic Retinopathy

Macular Edema
Co-management

- A cooperative effort between individuals who participate in the patient’s care
 - Optimizing patient management

- Critical factors
 - Continuous communication
 - Clear guidelines for referral and consultation
 - Periodic review of the patient’s progress

Diabetic Retinopathy: Treatment

- Systemic Medical and Nutritional Management
 - Glycemic control
 - Hypertension control
 - Lipids

- Ocular Treatment
 - Panretinal Laser Photocoagulation
 - Focal/Grid Macular Laser Treatment
 - Pharmaceutical Treatment
 - Combined Pharmaceutical Treatment and Laser
 - Surgery
Diabetic Retinopathy: Systemic Medical Management

- Intensive glycemic control associated with decreased risk of newly diagnosed DR and reduced progression of existing retinopathy.
- Diabetes Control and Complications Trial (DCCT)
 - Type 1
 - United Kingdom Prospective Diabetes Study (UKPDS)
 - Type 2

Diabetic Retinopathy: Systemic Medical Management

- DCCT
 - Intensive glycemic control versus conventional treatment
 - Reduced development of DR by 76% and progression by 54%
 - Reduced progression of NPDR to severe NPDR, PDR
 - Reduced DME
 - Reduced need for Focal/Grid laser and PRP
 - Reduced risk of neuropathy by 60%, nephropathy by 54%

Diabetic Retinopathy: Systemic Medical Management

- UKPDS
 - Control of hypertension
 - Reduced progression of retinopathy
 - Reduced loss of vision
 - Reduced other microvascular complications

Diabetic Retinopathy: Systemic Medical Management

- Asymmetric carotid artery occlusive disease
 - Mild or moderate may have protective effect (perhaps due to diminished effect of HTN on retina)
 - Severe may lead to proliferative disease as part of ocular ischemic syndrome
- Pregnancy associated w/worsening of DR
 - Although improvement seen after delivery, treatment should not be delayed.

Questions and Comments?

Diabetic Retinopathy Study (DRS)

Study question: Is photocoagulation (argon or xenon arc) effective for treating DR?

Eligibility: PDR or bilateral severe NPDR, with visual acuity 20/100 or better in each eye.

Randomization: 1742 participants. One eye randomly assigned to photocoagulation (argon or xenon arc) and 1 eye assigned to no laser.

Outcome variable: Visual acuity less than 5/200 for at least 4 months.

Results: Photocoagulation (argon or xenon arc) reduces risk of severe vision loss compared with no treatment. Treated eyes with high-risk PDR achieved the greatest benefit.
DRS/ETDRS Panretinal Laser

- ≥ 1200 shots
- 500 micron spots
- ½ burn apart

DRS

- PRP reduced risk of severe visual loss (SVL) by 50% over 5 years
 - Subjects with High Risk PDR had greatest benefit

DRS Adverse effects

- Vitreous Hemorrhage
- Tractional Retinal Detachment (TRD)
- Combined TRD and Rhegmatogenous RD
- Decreased
 - Night vision
 - Color vision
 - Contrast sensitivity
 - Peripheral vision
- Transient adverse effects
 - Loss of accommodation
 - Loss of corneal sensitivity
 - Photopsias
PDR: Surgery (Vitrectomy)

- Indications
 - Dense, non-clearing VH (6wks – 3mo)
 - TRD (macula involving or threatening)
 - Combined TRD and Rhegmatogenous RD
 - Diffuse DME associated with posterior hyaloid traction
 - Significant recurrent VH despite max PRP
 - Anterior segment NV with media opacity
 - Dense premacular subhyaloid hemorrhage

Diabetic Retinopathy Vitrectomy Study (DRVS)

- Prospective, randomized trial
- Early (1-6 mo) vs. late (1 yr after onset) vitrectomy for VH related to PDR
- Early PPV clearly better for type 1 DM
- Type 2 DM showed no advantage of early vitrectomy
- These results no longer strictly adhered to
 - Usually 6 wks to 3 mon with early PPV if no prior PRP

Diabetic Macular Edema

Early Treatment Diabetic Retinopathy Study (ETDRS)

- Study questions:
 Is photocoagulation effective for treating DME?
 Is aspirin effective for preventing progression of diabetic retinopathy?

- Aspirin use results:
 - Aspirin use did not alter progression of diabetic retinopathy.
 - Aspirin use did not increase risk of vitreous hemorrhage.
 - Aspirin use did not affect visual acuity.
 - Aspirin use reduced risk of cardiovascular morbidity and mortality.

- Early scatter photocoagulation results:
 - Early scatter photocoagulation resulted in a small reduction in the risk of severe vision loss (>5/200 for at least 4 months).
 - Early scatter photocoagulation is not indicated for eyes with mild to moderate DR.
 - Early scatter photocoagulation may be most effective in patients with type 2 diabetes.

- Macular edema results:
 - Focal photocoagulation for DME decreased risk of moderate vision loss
 - Focal photocoagulation for DME increased chance of moderate vision gain
 - Focal photocoagulation for DME reduced retinal thickening.

- Clinically Significant Macular Edema (CSME)
 - ETDRS classification
ETDRS Outcomes for CSME

Three Year Analysis

<table>
<thead>
<tr>
<th></th>
<th>Immediate Tx (N=105)</th>
<th>Deferral of Tx (N=215)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUCCESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% ≥ 10 Letter Improvement</td>
<td>26.7%</td>
<td>11.2%</td>
<td>0.0006</td>
</tr>
<tr>
<td>% ≥ 15 Letter Improvement</td>
<td>11.4%</td>
<td>5.1%</td>
<td>0.06</td>
</tr>
<tr>
<td>FAILURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% ≥ 10 Letter Worsening</td>
<td>21.9%</td>
<td>46.5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>% ≥ 15 Letter Worsening</td>
<td>16.2%</td>
<td>36.7%</td>
<td>0.001</td>
</tr>
</tbody>
</table>

(VA ≤ 20/32)
Eyes With Definite Center Thickening, Less Severe Retinopathy
Before laser: Tx 20/20?

1year s/p focal/grid laser

Two years s/p focal/grid laser

CSME:
Laser Treatment

- Pre-Tx clinical features associated with poorer visual outcome after laser for DME:
 - Diffuse macular edema with foveal involvement
 - Diffuse fluorescein leakage
 - Macular ischemia
 - Hard exudates in fovea
 - Marked CME
DME: Anti-VEGF Therapy

- **READ** - Ranibizumab for Edema of the Macula in Diabetes
- **RESOLVE** - Safety and Efficacy of Ranibizumab in Diabetic Macular Edema with Center Involvement
- **RESTORE** - Efficacy and Safety of Ranibizumab in Patients with Visual Impairment Due to Diabetic Macular Edema
- **RISE/RISE** - A Study of Ranibizumab Injection in Subjects with Clinically Significant Macular Edema with Center Involvement Secondary to DM
- **BOLT** - Intravitreal Bevacizumab Or Laser Therapy in the Management of Diabetic Macula Edema
- **VIVID/VISTA** - Intravitreal Aflibercept for Diabetic Macula Edema

DRCR.net Protocol I – Ranibizumab Plus Prompt or Deferred Laser or Triamcinolone Plus Prompt Laser for Diabetic Macular Edema

RIDE & RISE Study Design

- **RIDE** & **RISE** Study Design
- **Additional Hypothesis & Question (at Month 36):**
 - Outcomes with ranibizumab at Month 24 are maintained over longer periods of time
 - What is the consequence, if any, of delayed ranibizumab treatment for DME?

36 mos s/p ranibizumab x 36

One month s/p ranibizumab x 1

- **VA 20/40**
- **VA 20/25**
Rationale for 0.3 mg Ranibizumab in DME

- Both doses demonstrated similar rapid, sustained efficacy in DME through Month 36
- Fewer AEs potentially related to systemic VEGF inhibition with 0.3 mg in DME
- DME patients often more medically complex than those w/o DME
- Bilateral treatment rates higher in DME patients
- 0.3 mg dose provides best balance of efficacy with lower potential systemic exposure
- Genentech, Inc. recommended 0.3 mg for FDA approval (approved August 10, 2012)

Bevacizumab 1.25 mg
Ranibizumab 0.5 mg
Ranibizumab 0.3 mg (simulated)
Aflibercept 2 mg

A 2-Year Prospective Randomized Controlled Trial of Intravitreal Bevacizumab or Laser Therapy (BOLT) in the Management of Diabetic Macular Edema

- This study’s results support longer term use of intravitreal bevacizumab for persistent center-involved CSME.

BOLT Study: Bevacizumab for DME Visual Acuity and OCT at 2 Years

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Laser N=28</th>
<th>Bevacizumab N=37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Change in BCVA (letters)</td>
<td>+2.5</td>
<td>+9*</td>
</tr>
<tr>
<td>Mean Change in retinal thickness (microns)</td>
<td>-118</td>
<td>-146**</td>
</tr>
</tbody>
</table>

*p < 0.05 **p < 0.001
Median of 13 bevacizumab injections (9 in year 1 and 4 in year 2)
Median of 4 laser treatments (3 in year 1 and 1 in year 2)

Visual Acuity

Change in Visual Acuity*

<table>
<thead>
<tr>
<th>Change in Visual Acuity (letters)**</th>
<th>Ranibizumab + Immediate Laser N = 144</th>
<th>Ranibizumab + Deferred Laser N = 147</th>
<th>Estimated Difference (B vs. C) (95% CI)</th>
<th>[P-Value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-years</td>
<td>+7.2</td>
<td>+9.0</td>
<td>-1.8 (-3.6 to +0.1) [P = 0.06]</td>
<td></td>
</tr>
<tr>
<td>3- Years</td>
<td>+6.8</td>
<td>+9.7</td>
<td>-2.9 (-5.4 to -0.4) [P = 0.02]</td>
<td></td>
</tr>
</tbody>
</table>

*Visits occurring between 880 and 1204 days from randomization were included as 3 year visits
**truncated to ± 30 letters, based on longitudinal analyses adjusting for baseline VA

Study Conclusions

• Focal/grid laser performed at the initiation of intravitreal ranibizumab is no better, and possibly worse, than deferring laser for at least 24 weeks in eyes with DME involving the fovea and vision impairment.

Study Design

Randomized, multicenter, double-masked trials in patients with clinically significant DME with central involvement and ETDRS BCVA 20/40 to 20/320

VIVID DME

Intravitreal Aflibercept Injection for Diabetic Macular Edema

Primary Results

VISTA DME

- Intravitreal Aflibercept 2 mg q4 wks
- Laser Photocoagulation
- Primary endpoint: Week 32
- Key secondary endpoint: Change in ETDRS
- Continued treatment through Year 3
Management of Diabetic Retinopathy

- In 2005, we had a major paradigm shift in AMD treatment.
- From ablative therapy to pharmacotherapy.
- Anti-VEGF injections improve the visual acuity rapidly and sustain visual acuity gains.
- This same paradigm shift is happening in DR, but at a slower pace.

Management of DME

- Recently, laser out-performed intravitreal Kenalog.
- Laser + Lucentis out-performed laser alone.

Questions and Comments?

Proportion of Patients Gaining ≥ 15 Letters

Proportion of Patients Losing ≥ 15 Letters

Questions and Comments?

Proportion of Patients Gaining ≥ 15 Letters

Proportion of Patients Losing ≥ 15 Letters

Questions and Comments?

Management of DR: The Future

- Will there still be a role for laser in DR?
- Probably. In DME/DR, VEGF production is continuous.
- Using pharmacotherapy alone will mean sustained injections for the rest of the patient’s life.
- Diabetic Retinopathy Clinical Research Network (DRCR) is evaluating combination therapy.

Management of DME

- Recently, laser out-performed intravitreal Kenalog.
- Laser + Lucentis out-performed laser alone.
Micropulse Laser Therapy for DME

- Sub-visible, tissue-sparing photocoagulation.
- MPL technology "chops" a continuous-wave beam into a train of repetitive short pulses.

Emerging Treatments for DME

- OZURDEX (intravitreal implant) 0.7mg (Allergan)
- Intravitreal, biodegradable implant
- Approved for treatment of persistent ME in RVO

Diabetic Macular Edema: Steroid Therapy

- DRCR.net Protocol B
- DRCR.net Protocol I
- MEAD - Macular Edema: Assessment of Implantable Dexamethasone (Ozurdex) in DME

DRCR Network: Protocol B

- 840 eyes (693 subjects) from 88 clinical sites
- Treatment Groups
 - Intravitreal Triamcinolone Acetonide
 - Laser: N = 330
 - 1 mg: N = 256
 - 4 mg: N = 254

DRCR Network Protocol B: Subgroup Analysis

Table 5. Change in Visual Acuity at 2-Year Primary Outcome among Subgroups

Baseline Data

<table>
<thead>
<tr>
<th>Baseline Va</th>
<th>Eyes</th>
<th>Laser, 1 mg, 4 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/32 - 20/63</td>
<td>189 149 149</td>
<td>23 23 23 17 16</td>
</tr>
<tr>
<td>20/63-1.7/200-1</td>
<td>129 94 92</td>
<td>12 24 26 43 33 39</td>
</tr>
<tr>
<td>20/200 - 20/320-1</td>
<td>12 13 13</td>
<td>17 15 0 62 46 77</td>
</tr>
</tbody>
</table>

Baseline Va

<table>
<thead>
<tr>
<th>Baseline Va</th>
<th>Eyes</th>
<th>Laser, 1 mg, 4 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/32 - 20/63</td>
<td>189 149 149</td>
<td>23 23 23 17 16</td>
</tr>
<tr>
<td>20/63-1.7/200-1</td>
<td>129 94 92</td>
<td>12 24 26 43 33 39</td>
</tr>
<tr>
<td>20/200 - 20/320-1</td>
<td>12 13 13</td>
<td>17 15 0 62 46 77</td>
</tr>
</tbody>
</table>

2 Year Data

<table>
<thead>
<tr>
<th>≥10-Letter Worsening (%)</th>
<th>≥10-Letter Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Va</td>
<td>Eyes</td>
</tr>
<tr>
<td>20/32 - 20/63</td>
<td>189 149 149</td>
</tr>
<tr>
<td>20/63-1.7/200-1</td>
<td>129 94 92</td>
</tr>
<tr>
<td>20/200 - 20/320-1</td>
<td>12 13 13</td>
</tr>
</tbody>
</table>

Median Central Subfield Thickness in Laser and IVTA Treated Eyes

DRCR Network Protocol B:

- 840 eyes (693 subjects) from 88 clinical sites
- Treatment Groups
 - Intravitreal Triamcinolone Acetonide
 - Laser: N = 330
 - 1 mg: N = 256
 - 4 mg: N = 254

Ophthalmology 2008; 115:1447-1459 (PROTOCOL B)
MONOTHERAPY with LASER vs IVTA

Table 5. Change in Visual Acuity at 2-Year Primary Outcome among Subgroups

Ophthalmology 2008; 115:1447-1459
Mean Average Change in BCVA During the Study

Results During the 3-Year Study

<table>
<thead>
<tr>
<th>Study Arm</th>
<th>Mean Average Change in BCVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 mg DEX Implant (n = 351)</td>
<td>2.33</td>
</tr>
<tr>
<td>0.35 mg DEX Implant (n = 367)</td>
<td>2.03</td>
</tr>
<tr>
<td>Sham (n = 235)</td>
<td>2.6</td>
</tr>
</tbody>
</table>

P ≤ 0.001 vs sham. *P = 0.016 vs sham.

Decrease in Central Subfield Retinal Thickness From Baseline was Significantly Greater With DEX Implant 0.7 mg versus Sham

Mean Average Decrease in CRT From Baseline (µm)

<table>
<thead>
<tr>
<th>Study Arm</th>
<th>Mean Average Decrease in CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 mg DEX Implant (n = 351)</td>
<td>111.6</td>
</tr>
<tr>
<td>0.35 mg DEX Implant (n = 367)</td>
<td>108.7</td>
</tr>
<tr>
<td>Sham (n = 235)</td>
<td>41.5</td>
</tr>
</tbody>
</table>

P ≤ 0.001 vs sham. *P = 0.016 vs sham.

Percentage of Phakic Patients With Cataract AEs or Surgery at Any Time During Study

- The incidence of cataract-related AEs increased after the first study year.
- Most cataract surgeries were performed between 18 and 30 months.

<table>
<thead>
<tr>
<th>Patients With a Phakic Study Eye at Baseline</th>
<th>Incidence During the Study (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract-related AE</td>
<td></td>
</tr>
<tr>
<td>DEX implant 0.7 mg</td>
<td>67.0</td>
</tr>
<tr>
<td>DEX implant 0.35 mg</td>
<td>64.1</td>
</tr>
<tr>
<td>Sham</td>
<td>20.4</td>
</tr>
<tr>
<td>Cataract surgery</td>
<td></td>
</tr>
<tr>
<td>DEX implant 0.7 mg</td>
<td>59.2</td>
</tr>
<tr>
<td>DEX implant 0.35 mg</td>
<td>52.3</td>
</tr>
<tr>
<td>Sham</td>
<td>7.2</td>
</tr>
</tbody>
</table>

IOP Safety Parameters in Study Eyes

- Overall, 36% of DEX implant 0.7-mg patients and 5.1% of sham patients had AEs related to elevated IOP or glaucoma during the study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DEX Implant 0.7 mg (n = 347)</th>
<th>DEX Implant 0.35 mg (n = 345)</th>
<th>Sham (n = 350)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP at any visit during the study, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOP ≤ 21 mm Hg</td>
<td>32.0 (111)</td>
<td>27.4 (94)</td>
<td>4.3 (15)</td>
</tr>
<tr>
<td>IOP ≥ 35 mm Hg</td>
<td>6.6 (23)</td>
<td>5.2 (18)</td>
<td>0.9 (2)</td>
</tr>
<tr>
<td>Increase of IOP from baseline</td>
<td>27.7 (96)</td>
<td>24.8 (86)</td>
<td>3.7 (13)</td>
</tr>
<tr>
<td>Use of IOP-lowering medication, %</td>
<td>41.5 (144)</td>
<td>37.8 (128)</td>
<td>9.1 (32)</td>
</tr>
</tbody>
</table>

DEX Implant Provides Rapid and Durable Treatment Benefit in DME

- DEX implant provides long-term vision improvement in patients with DME.
- Rapid onset of statistically significant reduction in macular edema and treatment benefit observed after initial and repeated DEX implant injections.

- Proportion of patients achieving ≥15-letter gain at year 3 significantly higher with DEX implant versus sham treatment.
- Treatment benefit of DEX implant observed with a mean of 4.1 injections over 3 years.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DEX Implant 0.7 mg (n = 347)</th>
<th>DEX Implant 0.35 mg (n = 345)</th>
<th>Sham (n = 350)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOP at any visit during the study, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOP ≤ 21 mm Hg</td>
<td>32.0 (111)</td>
<td>27.4 (94)</td>
<td>4.3 (15)</td>
</tr>
<tr>
<td>IOP ≥ 35 mm Hg</td>
<td>6.6 (23)</td>
<td>5.2 (18)</td>
<td>0.9 (2)</td>
</tr>
<tr>
<td>Increase of IOP from baseline</td>
<td>27.7 (96)</td>
<td>24.8 (86)</td>
<td>3.7 (13)</td>
</tr>
<tr>
<td>Use of IOP-lowering medication, %</td>
<td>41.5 (144)</td>
<td>37.8 (128)</td>
<td>9.1 (32)</td>
</tr>
</tbody>
</table>

MEAD Conclusions

- With an average of approximately 4 injections over a 3-year period, patients treated with DEX implant achieved statistically significant and clinically meaningful visual improvements.
- The data support the use of DEX implant in the management of patients with DME.

DME Treatment Paradigm

- Focal/grid laser
- Non-center involved DME with good VA
- Anti-VEGF therapy
- Center-involved DME with VA loss
- Steroids
- Pseudophakia
- Refractory DME

Conclusions

- Type 2 DM is on the rise for all ages.
- Obesity and sleep disordered breathing are among several contributing factors.
- DR is a microvascular disease.
- Traditional treatment of DR works, but…
- With pharmacotherapies, the treatment paradigm is shifting, for the better!
Take Home Message on DM/DR

• Diabetic Retinopathy is exacerbated by many concomitant conditions.

• Control of the systemic aspects of the disease improves both systemic and ocular health.

• Understand how Diabetic Retinopathy relates to the overall systemic health.

Thank you!

Carlo and Joe
Pizzimen@nova.edu